16 research outputs found

    Open Compound Domain Adaptation with Object Style Compensation for Semantic Segmentation

    Full text link
    Many methods of semantic image segmentation have borrowed the success of open compound domain adaptation. They minimize the style gap between the images of source and target domains, more easily predicting the accurate pseudo annotations for target domain's images that train segmentation network. The existing methods globally adapt the scene style of the images, whereas the object styles of different categories or instances are adapted improperly. This paper proposes the Object Style Compensation, where we construct the Object-Level Discrepancy Memory with multiple sets of discrepancy features. The discrepancy features in a set capture the style changes of the same category's object instances adapted from target to source domains. We learn the discrepancy features from the images of source and target domains, storing the discrepancy features in memory. With this memory, we select appropriate discrepancy features for compensating the style information of the object instances of various categories, adapting the object styles to a unified style of source domain. Our method enables a more accurate computation of the pseudo annotations for target domain's images, thus yielding state-of-the-art results on different datasets.Comment: Accepted by NeurlPS202

    Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking

    Get PDF
    International audience— Architecture Analysis and Design Language (AADL) is widely used for the architecture design and analysis of safety-critical real-time systems. Based on the Hybrid annex which supports continuous behavior modeling, Hybrid AADL enables seamless interactions between embedded control systems and continuous physical environments. Although Hybrid AADL is promising in dependability prediction through analyzable architecture development, the worst-case performance analysis of Hybrid AADL designs can easily lead to an overly pessimistic estimation. So far, Hybrid AADL cannot be used to accurately quantify and reason the overall performance of complex systems which interact with external uncertain environments intensively. To address this problem, this paper proposes a statistical model checking based framework that can perform quantitative evaluation of uncertainty-aware Hybrid AADL designs against various performance queries. Our approach extends Hybrid AADL to support the modeling of environment uncertainties. Furthermore, we propose a set of transformation rules that can automatically translate AADL designs together with designers' requirements into Networks of Priced Timed Automata (NPTA) and performance queries, respectively. Comprehensive experimental results on the Movement Authority (MA) scenario of Chinese Train Control System Level 3 (CTCS-3) demonstrate the effectiveness of our approach

    Discovery and development of artemisinin

    No full text

    Partial Discharge Pattern Recognition of Gas-Insulated Switchgear via a Light-Scale Convolutional Neural Network

    No full text
    Partial discharge (PD) is one of the major form expressions of gas-insulated switchgear (GIS) insulation defects. Because PD will accelerate equipment aging, online monitoring and fault diagnosis plays a significant role in ensuring safe and reliable operation of the power system. Owing to feature engineering or vanishing gradients, however, existing pattern recognition methods for GIS PD are complex and inefficient. To improve recognition accuracy, a novel GIS PD pattern recognition method based on a light-scale convolutional neural network (LCNN) without artificial feature engineering is proposed. Firstly, GIS PD data are obtained through experiments and finite-difference time-domain simulations. Secondly, data enhancement is reinforced by a conditional variation auto-encoder. Thirdly, the LCNN structure is applied for GIS PD pattern recognition while the deconvolution neural network is used for model visualization. The recognition accuracy of the LCNN was 98.13%. Compared with traditional machine learning and other deep convolutional neural networks, the proposed method can effectively improve recognition accuracy and shorten calculation time, thus making it much more suitable for the ubiquitous-power Internet of Things and big data
    corecore